Sunnie has an array of integers $A$ of length $N$. She creates a new array $B$: for each pair of elements in $A$, she adds their product to the array $B$. Now, Sunnie wants to know how many elements in $B$ contain the digit $K$.

Input

The first line of input contains two integers $N$ and $K$.
The second line of input contains $N$ integers, the elements of $A$.

Output

Output a single integer: the number of elements in $B$ containing the digit $K$.

Hint

The number of pairs that can be chosen from $N$ elements is $\frac{N(N-1)}{2}$.

Constraints

For all subtasks, $0 \le K \le 9$, $1 \le A_i \le 10^3$.
Subtask 1 (50%): $2 \le N \le 10^3$
Subtask 2 (50%): $2 \le N \le 10^5$

Sample Test Cases

Input Output
4 8
5 9 14 17
2
$B = \{45, 70, 85, 126, 153, 238\}$
$85$ and $238$ contain the digit $8$.
4 1
1 1 1 1
6
$B = \{1, 1, 1, 1, 1, 1\}$
All elements of $B$ contain the digit $1$.
Click to copy.

Scoring: Per Subtask
Authored by s16f22
Appeared in 2022 Mini Contest 0