You have an array $A$ of $N$ integers, where the $i$-th element is $A_i$.
You can perform reduction on the array:
- Choose an integer $x$ where $1 \le x \le N$, then decrease the values of $A_0, A_1,...,A_{x-1}$ and $A_{x+1}, A_{x+2},...,A_N$ by $1$.
Input
The first line of input contains a positive integer, $N$.
The second line of input contains $N$ integers, where the $i$-th integer is $A_i$.
Output
Output the minimum number of reductions needed to perform.
Constraints
For all cases, $1 \le N \le 5\times10^5, 1 \le A_i \le 10^9$
Subtask 1 (20%): $N = 3$
Subtask 2 (20%): $1 \le N \le 50$
Subtask 3 (60%): No additional constraints
Sample Test Cases
Input | Output | |
---|---|---|
5 3 1 4 1 5 |
11 |
Scoring: Per Subtask
Authored by wy24215
Appeared in WYHK 2025 Mini Contest 3